Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499765

RESUMO

Metformin, a widely used first-line treatment for type 2 diabetes (T2D), is known to reduce blood glucose levels and suppress appetite. Here we report a significant elevation of the appetite-suppressing metabolite N-lactoyl phenylalanine (Lac-Phe) in the blood of individuals treated with metformin across seven observational and interventional studies. Furthermore, Lac-Phe levels were found to rise in response to acute metformin administration and post-prandially in patients with T2D or in metabolically healthy volunteers.

2.
iScience ; 26(11): 108269, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026185

RESUMO

Atherosclerotic cardiovascular disease is characterized by both chronic low-grade inflammation and dyslipidemia. The AMP-activated protein kinase (AMPK) inhibits cholesterol synthesis and dampens inflammation but whether pharmacological activation reduces atherosclerosis is equivocal. In the current study, we found that the orally bioavailable and highly selective activator of AMPKß1 complexes, PF-06409577, reduced atherosclerosis in two mouse models in a myeloid-derived AMPKß1 dependent manner, suggesting a critical role for macrophages. In bone marrow-derived macrophages (BMDMs), PF-06409577 dose dependently activated AMPK as indicated by increased phosphorylation of downstream substrates ULK1 and acetyl-CoA carboxylase (ACC), which are important for autophagy and fatty acid oxidation/de novo lipogenesis, respectively. Treatment of BMDMs with PF-06409577 suppressed fatty acid and cholesterol synthesis and transcripts related to the inflammatory response while increasing transcripts important for autophagy through AMPKß1. These data indicate that pharmacologically targeting macrophage AMPKß1 may be a promising strategy for reducing atherosclerosis.

3.
J Immunol ; 211(6): 1032-1041, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37578391

RESUMO

Annexin A1 is a key anti-inflammatory effector protein that is involved in the anti-inflammatory effects of glucocorticoids. 4-Octyl itaconate (4-OI), a derivative of the endogenous metabolite itaconate, which is abundantly produced by LPS-activated macrophages, has recently been identified as a potent anti-inflammatory agent. The anti-inflammatory effects of 4-OI share a significant overlap with those of dimethyl fumarate (DMF), a derivate of another Krebs cycle metabolite fumarate, which is already in use clinically for the treatment of inflammatory diseases. In this study we show that both 4-OI and DMF induce secretion of the 33-kDa form of annexin A1 from murine bone marrow-derived macrophages, an effect that is much more pronounced in LPS-stimulated cells. We also show that this 4-OI- and DMF-driven annexin A1 secretion is NRF2-dependent and that other means of activating NRF2 give rise to the same response. Lastly, we demonstrate that the cholesterol transporter ABCA1, which has previously been implicated in annexin A1 secretion, is required for this process in macrophages. Our findings contribute to the growing body of knowledge on the anti-inflammatory effects of the Krebs cycle metabolite derivatives 4-OI and DMF.


Assuntos
Anexina A1 , Fumarato de Dimetilo , Camundongos , Animais , Fumarato de Dimetilo/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia
5.
Nat Commun ; 14(1): 3513, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316487

RESUMO

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.


Assuntos
COVID-19 , Interferon Tipo I , Trombose , Humanos , Anticoagulantes , Tromboplastina , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Escherichia coli , Inflamação , Lipopolissacarídeos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , Caspases
6.
Nature ; 615(7952): 490-498, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890227

RESUMO

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Assuntos
Fumarato Hidratase , Interferon beta , Macrófagos , Mitocôndrias , RNA Mitocondrial , Humanos , Argininossuccinato Sintase/metabolismo , Ácido Argininossuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiração Celular , Citosol/metabolismo , Fumarato Hidratase/antagonistas & inibidores , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Interferon beta/biossíntese , Interferon beta/imunologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lúpus Eritematoso Sistêmico/enzimologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Metabolômica , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mitocondrial/metabolismo
7.
Biochem J ; 479(24): 2499-2510, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546613

RESUMO

Immune cells are metabolically plastic and respond to inflammatory stimuli with large shifts in metabolism. Itaconate is one of the most up-regulated metabolites in macrophages in response to the gram negative bacterial product LPS. As such, itaconate has recently been the subject of intense research interest. The artificial derivatives, including 4-Octyl Itaconate (4-OI) and Dimethyl Itaconate (DI) and naturally produced isomers, mesaconate and citraconate, have been tested in relation to itaconate biology with similarities and differences in the biochemistry and immunomodulatory properties of this family of compounds emerging. Both itaconate and 4-OI have been shown to modify cysteines on a range of target proteins, with the modification being linked to a functional change. Targets include KEAP1 (the NRF2 inhibitor), GAPDH, NLRP3, JAK1, and the lysosomal regulator, TFEB. 4-OI and DI are more electrophilic, and are therefore stronger NRF2 activators, and inhibit the production of Type I IFNs, while itaconate inhibits SDH and the dioxygenase, TET2. Additionally, both itaconate and derivates have been shown to be protective across a wide range of mouse models of inflammatory and infectious diseases, through both distinct and overlapping mechanisms. As such, continued research involving the comparison of itaconate and related molecules holds exciting prospects for the study of cysteine modification and pathways for immunomodulation and the potential for new anti-inflammatory therapeutics.


Assuntos
Inflamação , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Succinatos/farmacologia , Succinatos/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(48): e2119824119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409897

RESUMO

Fatty acids are vital for the survival of eukaryotes, but when present in excess can have deleterious consequences. The AMP-activated protein kinase (AMPK) is an important regulator of multiple branches of metabolism. Studies in purified enzyme preparations and cultured cells have shown that AMPK is allosterically activated by small molecules as well as fatty acyl-CoAs through a mechanism involving Ser108 within the regulatory AMPK ß1 isoform. However, the in vivo physiological significance of this residue has not been evaluated. In the current study, we generated mice with a targeted germline knock-in (KI) mutation of AMPKß1 Ser108 to Ala (S108A-KI), which renders the site phospho-deficient. S108A-KI mice had reduced AMPK activity (50 to 75%) in the liver but not in the skeletal muscle. On a chow diet, S108A-KI mice had impairments in exogenous lipid-induced fatty acid oxidation. Studies in mice fed a high-fat diet found that S108A-KI mice had a tendency for greater glucose intolerance and elevated liver triglycerides. Consistent with increased liver triglycerides, livers of S108A-KI mice had reductions in mitochondrial content and respiration that were accompanied by enlarged mitochondria, suggestive of impairments in mitophagy. Subsequent studies in primary hepatocytes found that S108A-KI mice had reductions in palmitate- stimulated Cpt1a and Ppargc1a mRNA, ULK1 phosphorylation and autophagic/mitophagic flux. These data demonstrate an important physiological role of AMPKß1 Ser108 phosphorylation in promoting fatty acid oxidation, mitochondrial biogenesis and autophagy under conditions of high lipid availability. As both ketogenic diets and intermittent fasting increase circulating free fatty acid levels, AMPK activity, mitochondrial biogenesis, and mitophagy, these data suggest a potential unifying mechanism which may be important in mediating these effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Graxos , Camundongos , Animais , Fosforilação , Ácidos Graxos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Homeostase , Autofagia , Triglicerídeos/metabolismo
9.
J Biol Chem ; 298(5): 101852, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331736

RESUMO

AMP-activated protein kinase (AMPK) is a central energy sensor that coordinates the response to energy challenges to maintain cellular ATP levels. AMPK is a potential therapeutic target for treating metabolic disorders, and several direct synthetic activators of AMPK have been developed that show promise in preclinical models of type 2 diabetes. These compounds have been shown to regulate AMPK through binding to a novel allosteric drug and metabolite (ADaM)-binding site on AMPK, and it is possible that other molecules might similarly bind this site. Here, we performed a high-throughput screen with natural plant compounds to identify such direct allosteric activators of AMPK. We identified a natural plant dihydrophenathrene, Lusianthridin, which allosterically activates and protects AMPK from dephosphorylation by binding to the ADaM site. Similar to other ADaM site activators, Lusianthridin showed preferential activation of AMPKß1-containing complexes in intact cells and was unable to activate an AMPKß1 S108A mutant. Lusianthridin dose-dependently increased phosphorylation of acetyl-CoA carboxylase in mouse primary hepatocytes, which led to a corresponding decrease in de novo lipogenesis. This ability of Lusianthridin to inhibit lipogenesis was impaired in hepatocytes from ß1 S108A knock-in mice and mice bearing a mutation at the AMPK phosphorylation site of acetyl-CoA carboxylase 1/2. Finally, we show that activation of AMPK by natural compounds extends to several analogs of Lusianthridin and the related chemical series, phenanthrenes. The emergence of natural plant compounds that regulate AMPK through the ADaM site raises the distinct possibility that other natural compounds share a common mechanism of regulation.


Assuntos
Proteínas Quinases Ativadas por AMP , Hepatócitos , Lipídeos , Fenantrenos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Diabetes Mellitus Tipo 2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Camundongos , Fenantrenos/farmacologia , Fosforilação
10.
Mol Metab ; 53: 101321, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425254

RESUMO

OBJECTIVE: Salsalate is a prodrug of salicylate that lowers blood glucose in people with type 2 diabetes. AMP-activated protein kinase (AMPK) is an αßγ heterotrimer which inhibits macrophage inflammation and the synthesis of fatty acids and cholesterol in the liver through phosphorylation of acetyl-CoA carboxylase (ACC) and HMG-CoA reductase (HMGCR), respectively. Salicylate binds to and activates AMPKß1-containing heterotrimers that are highly expressed in both macrophages and liver, but the potential importance of AMPK and ability of salsalate to reduce atherosclerosis have not been evaluated. METHODS: ApoE-/- and LDLr-/- mice with or without (-/-) germline or bone marrow AMPKß1, respectively, were treated with salsalate, and atherosclerotic plaque size was evaluated in serial sections of the aortic root. Studies examining the effects of salicylate on markers of inflammation, fatty acid and cholesterol synthesis and proliferation were conducted in bone marrow-derived macrophages (BMDMs) from wild-type mice or mice lacking AMPKß1 or the key AMPK-inhibitory phosphorylation sites on ACC (ACC knock-in (KI)-ACC KI) or HMGCR (HMGCR-KI). RESULTS: Salsalate reduced atherosclerotic plaques in the aortic roots of ApoE-/- mice, but not ApoE-/- AMPKß1-/- mice. Similarly, salsalate reduced atherosclerosis in LDLr-/- mice receiving wild-type but not AMPKß1-/- bone marrow. Reductions in atherosclerosis by salsalate were associated with reduced macrophage proliferation, reduced plaque lipid content and reduced serum cholesterol. In BMDMs, this suppression of proliferation by salicylate required phosphorylation of HMGCR and the suppression of cholesterol synthesis. CONCLUSIONS: These data indicate that salsalate suppresses macrophage proliferation and atherosclerosis through an AMPKß1-dependent pathway, which may involve HMGCR phosphorylation and cholesterol synthesis. Since rapidly-proliferating macrophages are a hallmark of atherosclerosis, these data indicate further evaluation of salsalate as a potential therapeutic agent for treating atherosclerotic cardiovascular disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/metabolismo , Salicilatos/metabolismo , Proteínas Quinases Ativadas por AMP/deficiência , Animais , Células Cultivadas , Camundongos , Camundongos Knockout
11.
Nat Commun ; 12(1): 5163, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453052

RESUMO

Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Clorpirifos/metabolismo , Obesidade/fisiopatologia , Praguicidas/metabolismo , Termogênese/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Clorpirifos/toxicidade , AMP Cíclico/metabolismo , Metabolismo Energético , Contaminação de Alimentos/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/metabolismo , Praguicidas/toxicidade , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Nat Rev Endocrinol ; 17(10): 592-607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34381196

RESUMO

Growth differentiation factor 15 (GDF15) is a member of the TGFß superfamily whose expression is increased in response to cellular stress and disease as well as by metformin. Elevations in GDF15 reduce food intake and body mass in animal models through binding to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) and the recruitment of the receptor tyrosine kinase RET in the hindbrain. This effect is largely independent of other appetite-regulating hormones (for example, leptin, ghrelin or glucagon-like peptide 1). Consistent with an important role for the GDF15-GFRAL signalling axis, some human genetic studies support an interrelationship with human obesity. Furthermore, findings in both mice and humans have shown that metformin and exercise increase circulating levels of GDF15. GDF15 might also exert anti-inflammatory effects through mechanisms that are not fully understood. These unique and distinct mechanisms for suppressing food intake and inflammation makes GDF15 an appealing candidate to treat many metabolic diseases, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, cardiovascular disease and cancer cachexia. Here, we review the mechanisms regulating GDF15 production and secretion, GDF15 signalling in different cell types, and how GDF15-targeted pharmaceutical approaches might be effective in the treatment of metabolic diseases.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Fator 15 de Diferenciação de Crescimento/antagonistas & inibidores , Fator 15 de Diferenciação de Crescimento/metabolismo , Doenças Metabólicas/tratamento farmacológico , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Metformina/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
13.
Nat Immunol ; 22(4): 398-399, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767428
14.
FASEB J ; 35(1): e21218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337559

RESUMO

Growth differentiating factor-15 (GDF15) is an emerging target for the treatment of obesity and metabolic disease partly due to its ability to suppress food intake. GDF15 expression and secretion are thought to be regulated by a cellular integrated stress response, which involves endoplasmic reticulum (ER) stress. AMPK is another cellular stress sensor, but the relationship between AMPK, ER stress, and GDF15 has not been assessed in vivo. Wildtype (WT), AMPK ß1 deficient (AMPKß1-/- ), and CHOP-/- mice were treated with three distinct AMPK activators; AICAR, which is converted to ZMP mimicking the effects of AMP on the AMPKγ isoform, R419, which indirectly activates AMPK through inhibition of mitochondrial respiration, or A769662, a direct AMPK activator which binds the AMPKß1 isoform ADaM site causing allosteric activation. Following treatments, liver Gdf15, markers of ER-stress, AMPK activity, adenine nucleotides, circulating GDF15, and food intake were assessed. AICAR and R419 caused ER and energetic stress, increased GDF15 expression and secretion, and suppressed food intake. Direct activation of AMPK ß1 containing complexes by A769662 increased hepatic Gdf15 expression, circulating GDF15, and suppressed food intake, independent of ER stress. The effects of AICAR, R419, and A769662 on GDF15 were attenuated in AMPKß1-/- mice. AICAR and A769662 increased GDF15 to a similar extent in WT and CHOP-/- mice. Herein, we provide evidence that AMPK plays a role in mediating the induction of GDF15 under conditions of energetic stress in mouse liver in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Estresse do Retículo Endoplasmático , Fator 15 de Diferenciação de Crescimento/metabolismo , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Fator 15 de Diferenciação de Crescimento/genética , Camundongos , Camundongos Knockout , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
15.
Nat Metab ; 2(9): 873-881, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719536

RESUMO

Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules1. LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for ß-oxidation2-6. Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) ß1-containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the ß-subunit. ß1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK ß1-selective activators and promote LCFA oxidation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acil Coenzima A/fisiologia , Regulação Alostérica/fisiologia , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Animais , Compostos de Bifenilo , Domínio Catalítico , Ésteres , Isoenzimas/química , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação/genética , Oxirredução , Palmitoil Coenzima A/metabolismo , Fosforilação , Pironas/farmacologia , Tiofenos/farmacologia
16.
Biochem J ; 477(12): 2347-2361, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32510137

RESUMO

Sodium-glucose cotransporter 2 inhibitors such as canagliflozin lower blood glucose and reduce cardiovascular events in people with type 2 diabetes through mechanisms that are not fully understood. Canagliflozin has been shown to increase the activity of the AMP-activated protein kinase (AMPK), a metabolic energy sensor important for increasing fatty acid oxidation and energy expenditure and suppressing lipogenesis and inflammation, but whether AMPK activation is important for mediating some of the beneficial metabolic effects of canagliflozin has not been determined. We, therefore, evaluated the effects of canagliflozin in female ApoE-/- and ApoE-/-AMPK ß1-/- mice fed a western diet. Canagliflozin increased fatty acid oxidation and energy expenditure and lowered adiposity, blood glucose and the respiratory exchange ratio independently of AMPK ß1. Canagliflozin also suppressed liver lipid synthesis and the expression of ATP-citrate lyase, acetyl-CoA carboxylase and sterol response element-binding protein 1c independently of AMPK ß1. Canagliflozin lowered circulating IL-1ß and studies in bone marrow-derived macrophages indicated that in contrast with the metabolic adaptations, this effect required AMPK ß1. Canagliflozin had no effect on the size of atherosclerotic plaques in either ApoE-/- and ApoE-/-AMPK ß1-/- mice. Future studies investigating whether reductions in liver lipid synthesis and macrophage IL-1ß are important for the cardioprotective effects of canagliflozin warrant further investigation.


Assuntos
Apolipoproteínas E/fisiologia , Canagliflozina/farmacologia , Interleucina-1beta/fisiologia , Lipogênese , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Metabolismo Energético , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
17.
Nat Commun ; 11(1): 463, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974364

RESUMO

Obesity is linked with insulin resistance and is characterized by excessive accumulation of adipose tissue due to chronic energy imbalance. Increasing thermogenic brown and beige adipose tissue futile cycling may be an important strategy to increase energy expenditure in obesity, however, brown adipose tissue metabolic activity is lower with obesity. Herein, we report that the exposure of mice to thermoneutrality promotes the infiltration of white adipose tissue with mast cells that are highly enriched with tryptophan hydroxylase 1 (Tph1), the rate limiting enzyme regulating peripheral serotonin synthesis. Engraftment of mast cell-deficient mice with Tph1-/- mast cells or selective mast cell deletion of Tph1 enhances uncoupling protein 1 (Ucp1) expression in white adipose tissue and protects mice from developing obesity and insulin resistance. These data suggest that therapies aimed at inhibiting mast cell Tph1 may represent a therapeutic approach for the treatment of obesity and type 2 diabetes.


Assuntos
Resistência à Insulina/fisiologia , Mastócitos/metabolismo , Obesidade/etiologia , Serotonina/biossíntese , Triptofano Hidroxilase/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/prevenção & controle , Serotonina/genética , Termogênese , Triglicerídeos/metabolismo , Triptofano Hidroxilase/genética , Proteína Desacopladora 1/metabolismo
18.
Mol Metab ; 27: 62-74, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288993

RESUMO

OBJECTIVE: Growth differentiation factors (GDFs) and bone-morphogenic proteins (BMPs) are members of the transforming growth factor ß (TGFß) superfamily and are known to play a central role in the growth and differentiation of developing tissues. Accumulating evidence, however, demonstrates that many of these factors, such as BMP-2 and -4, as well as GDF15, also regulate lipid metabolism. GDF10 is a divergent member of the TGFß superfamily with a unique structure and is abundantly expressed in brain and adipose tissue; it is also secreted by the latter into the circulation. Although previous studies have demonstrated that overexpression of GDF10 reduces adiposity in mice, the role of circulating GDF10 on other tissues known to regulate lipid, like the liver, has not yet been examined. METHODS: Accordingly, GDF10-/- mice and age-matched GDF10+/+ control mice were fed either normal control diet (NCD) or high-fat diet (HFD) for 12 weeks and examined for changes in liver lipid homeostasis. Additional studies were also carried out in primary and immortalized human hepatocytes treated with recombinant human (rh)GDF10. RESULTS: Here, we show that circulating GDF10 levels are increased in conditions of diet-induced hepatic steatosis and, in turn, that secreted GDF10 can prevent excessive lipid accumulation in hepatocytes. We also report that GDF10-/- mice develop an obese phenotype as well as increased liver triglyceride accumulation when fed a NCD. Furthermore, HFD-fed GDF10-/- mice develop increased steatosis, endoplasmic reticulum (ER) stress, fibrosis, and injury of the liver compared to HFD-fed GDF10+/+ mice. To explain these observations, studies in cultured hepatocytes led to the observation that GDF10 attenuates nuclear peroxisome proliferator-activated receptor γ (PPARγ) activity; a transcription factor known to induce de novo lipogenesis. CONCLUSION: Our work delineates a hepatoprotective role of GDF10 as an adipokine capable of regulating hepatic lipid levels by blocking de novo lipogenesis to protect against ER stress and liver injury.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fator 10 de Diferenciação de Crescimento/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Animais , Ácidos Graxos/metabolismo , Fator 10 de Diferenciação de Crescimento/sangue , Células Hep G2 , Humanos , Lipogênese , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia
19.
Nat Metab ; 1(12): 1202-1208, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-32694673

RESUMO

Metformin is the most commonly prescribed medication for type 2 diabetes, owing to its glucose-lowering effects, which are mediated through the suppression of hepatic glucose production (reviewed in refs. 1-3). However, in addition to its effects on the liver, metformin reduces appetite and in preclinical models exerts beneficial effects on ageing and a number of diverse diseases (for example, cognitive disorders, cancer, cardiovascular disease) through mechanisms that are not fully understood1-3. Given the high concentration of metformin in the liver and its many beneficial effects beyond glycemic control, we reasoned that metformin may increase the secretion of a hepatocyte-derived endocrine factor that communicates with the central nervous system4. Here we show, using unbiased transcriptomics of mouse hepatocytes and analysis of proteins in human serum, that metformin induces expression and secretion of growth differentiating factor 15 (GDF15). In primary mouse hepatocytes, metformin stimulates the secretion of GDF15 by increasing the expression of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP; also known as DDIT3). In wild-type mice fed a high-fat diet, oral administration of metformin increases serum GDF15 and reduces food intake, body mass, fasting insulin and glucose intolerance; these effects are eliminated in GDF15 null mice. An increase in serum GDF15 is also associated with weight loss in patients with type 2 diabetes who take metformin. Although further studies will be required to determine the tissue source(s) of GDF15 produced in response to metformin in vivo, our data indicate that the therapeutic benefits of metformin on appetite, body mass and serum insulin depend on GDF15.


Assuntos
Depressores do Apetite/farmacologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Redução de Peso/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Intolerância à Glucose/prevenção & controle , Fator 15 de Diferenciação de Crescimento/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Masculino , Metformina/uso terapêutico , Camundongos , Cultura Primária de Células , Regulação para Cima/efeitos dos fármacos , Redução de Peso/genética
20.
EBioMedicine ; 31: 122-132, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29673898

RESUMO

Dysregulation of hepatic lipid and cholesterol metabolism is a significant contributor to cardiometabolic health, resulting in excessive liver lipid accumulation and ultimately non-alcoholic steatohepatitis (NASH). Therapeutic activators of the AMP-Activated Protein Kinase (AMPK) have been proposed as a treatment for metabolic diseases; we show that the AMPK ß1-biased activator PF-06409577 is capable of lowering hepatic and systemic lipid and cholesterol levels in both rodent and monkey preclinical models. PF-06409577 is able to inhibit de novo lipid and cholesterol synthesis pathways, and causes a reduction in hepatic lipids and mRNA expression of markers of hepatic fibrosis. These effects require AMPK activity in the hepatocytes. Treatment of hyperlipidemic rats or cynomolgus monkeys with PF-06409577 for 6weeks resulted in a reduction in circulating cholesterol. Together these data suggest that activation of AMPK ß1 complexes with PF-06409577 is capable of impacting multiple facets of liver disease and represents a promising strategy for the treatment of NAFLD and NASH in humans.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/farmacologia , Hepatócitos/enzimologia , Indóis/farmacologia , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica , Animais , Linhagem Celular , Haplorrinos , Hepatócitos/patologia , Humanos , Fígado/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...